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K-Map (Karnaugh Map) 

 

In many digital circuits and practical problems we need to find expression with minimum 

variables. We can minimize Boolean expressions of 3, 4 variables very easily using K-map 

without using any Boolean algebra theorems. K-map can take two forms Sum of Product (SOP) 

and Product of Sum (POS) according to the need of problem. K-map is table like representation 

but it gives more information than TRUTH TABLE. We fill grid of K-map with 0’s and 1’s then 

solve it by making groups. 

 A K-map is a truth table graph, which aids in visually simplifying logic. 

 It is useful for up to 5 or 6 variables, and is a good tool to help understand the process of 

logic simplification. 

 The algebraic approach we have used previously is also used to analyze complex circuits 

in industry (computer analysis). 

TWO VARIABLE K-MAP 

• At the right is a 2-variable K-map. 

• This very simple K-map demonstrates that an n-variable K-map contains all the combination of 

the n variables in the K- map space. 

 

https://www.geeksforgeeks.org/wp-content/uploads/gq/2015/10/de1.png
https://www.geeksforgeeks.org/wp-content/uploads/gq/2015/10/de1.png
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Three-Variable Karnaugh Map 

• Each square represents a 3-variable minterm or maxterm. 

• All of the 8 possible 3-variable terms are represented on the K-map. 

• When moving horizontally or vertically, only 1 variable changes between adjacent squares, 

never 2. This property of the Kmap, is unique and accounts for its unusual numbering system. 

• The K-map shown is one labeled for SOP terms. It could also be used for a POS problem, but 

we would have to re-label the variables 

 

Four Variable Karnaugh Map 

A 4-variable K-map can simplify problems of four Boolean variables.* 

• The K-map has one square for each possible minterm (16 in this case). 

• Migrating one square horizontally or vertically never results in more than one variable 

changing (square designations also shown in hex). Note that this is still an SOP K-map. 
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* Note that on all K-maps, the left and right edges are a common edge, while the top and bottom 

edges are also the same edge. Thus, the top and bottom rows are adjacent, as are the left and right 

columns. 

 

 

Steps to solve expression using K-map- 

1. Select K-map according to the number of variables. 

2. Identify minterms or maxterms as given in problem. 

3. For SOP put 1’s in blocks of K-map respective to the minterms (0’s elsewhere). 

4. For POS put 0’s in blocks of K-map respective to the maxterms(1’s elsewhere). 

5. Make rectangular groups containing total terms in power of two like 2,4,8 ..(except 1) and 

try to cover as many elements as you can in one group. 

6. From the groups made in step 5 find the product terms and sum them up for SOP form. 
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SOP FORM 

1. K-map of 3 variables- Z= ∑A,B,C(1,3,6,7) 

                                     C’                 C 

                     A’B’ 

                 

                    A’B 

                      AB 

                     AB’ 

 

Final expression (A’C+AB) 

From  group we get product term— A’C       and  AB 

Summing these product terms  we get- Final expression (A’C+AB) 

SUM of PRODUCTS  Map 

 
C’ C 

A’B’ 0 1 

A’B 0 1 

AB 1 1 

AB’ 0 0 

y = A'C + AB 

0 
1 

0 
1 

1 1 

0 0 
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2. K-map for 4 variables 

F(A,B,C,D)=∑(0,2,5,7,8,10,13,15) 

 

 

 

    B'D'  

   BD 

 

Map 

 
C’D’ C’D CD CD’ 

A’B’ 1 0 0 1 

A’B 0 1 1 0                        

AB 0 1 1 0 

AB’ 1 0 0 1 
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From red group we get product term— QS 

From green group we get product term— Q’S’ 

Summing  these product terms  we get- Final expression (QS+Q’S’) 

 

POS FORM 

1. K-map of 3 variables- F(A,B,C)=π(0,3,6,7)  

PRODUCT of SUMS 

Map 

 
C’ C 

A’B’ 1 0 

A’B 0 1 

AB 1 1 

AB’ 0 0 
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Groups 

(1,5) B’.C 

(4,5) A.B’ 

(2) A’.B.C’ 
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K-map of  4 variables- F(A,B,C,D)=π(3,5,7,8,10,11,12,13) 

PRODUCT of SUMS 

Map 

 
C’D’ C’D CD CD’ 

A’B’ 0 0 1 0 

A’B 0 1 1 0 

AB 1 1 0 0 

AB’ 1 0 1 1 

 

Map Layout 

 
C.D C.D C.D C.D 

A.B 0 1 3 2 

A.B 4 5 7 6 

A.B 12 13 15 14 

A.B 8 9 11 10 

 

Groups 

(0,2,4,6) A.D 

(1,9) B.C.D 

(14,15) A.B.C 

 

y = A’.D’ + B’.C’.D + A.B.C 
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y = A’.D’ + B’.C’.D + A.B.C 

 

y = (A + D) (B + C + D') (A' + B' + C') 
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Design a digital system whose output is defined as logically low if the 4-bit input binary 

number is a multiple of 3; otherwise, the output will be logically high. The output is 

defined if and only if the input binary number is greater than 2.  

 Step 1: Truth Table / Canonical Expression Leading to Min- or Max-Terms 

The first step in designing any digital system is to have a clear idea of the variables involved in 

the process, along with their state-values. Further, depending on the problem statement, we 

have to arrive at the number of output variables and their values for each and every 

combination of the input literals, which can be conveniently represented in the form of a truth 

table. 

In the given example: 

Number of input variables = 4, which we will call A, B, C and D. 

Number of output variables = 1, which we will call Y  

where 

         Y = Don't Care, if the input number is less than 3 (orange entries in the truth table) 

         Y = 0, if the input number is an integral multiple of 3 (green entries in the truth table) 

         Y = 1, if the input number is not an integral multiple of 3 (blue entries in the truth table) 
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Table 1 

 Note that, in addition to the input and output columns, the truth table also has a column which 

gives the decimal equivalent of the input binary combination, which makes it easy for us to 

arrive at the minterm or maxterm expansion for the given problem. Thus for the given 

example, 

Minterm expansion will be  ∑m(4,5,7,8,10,11,13,14) + ∑d (0,1,2) 

Maxterm expansion will be ∏M(3,6,9,12,15) · ∏D (0,1,2) 

However, sometimes the logical expression which is to be simplified might be directly given 

in terms of SOP or POS forms. In this case, the requirement for the truth table can be 

overlooked provided that we express the given expression in its canonical form, from which 

the corresponding minterms or maxterms can be obtained. 

 Step 2: Select and Populate K-Map 

From Step 1, we know the number of input variables involved in the logical expression from 

which size of the K-map required will be decided. Further, we also know the number of such 

K-maps required to design the desired system as the number of output variables would also be 

known definitely. This means that, for the example considered, we require a single (due to one 

output variable) K-map with 16 cells (as there are four input variables). 
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Next, we have to fill the K-map cells with one for each minterm, zero for each maxterm, and 

X for Don't Care terms. The procedure is to be repeated for every single output variable. 

Hence for this example, we get the K-map as shown in Figure 2. 

  

Figure 2: A completely filled 4-variable K-map 

 Step 3: Form the Groups 

K-map simplification can also be referred to as the "simplification by grouping" technique as it 

solely relies on the formation of clusters. That is, the main aim of the entire process is to 

gather together as many ones (for SOP solution) or zeros (for POS solution) under one roof for 

each of the output variables in the problem stated. However, while doing so we have to strictly 

abide by certain rules and regulations: 

 The process has to be initiated by grouping the bits which lie in adjacent cells such that 

the group formed contains the maximum number of selected bits. This means that for 

an n-variable K-map with 2ncells, try to group for 2n cells first, then for 2n-1 cells, next for 

2n-2 cells, and so on until the “group” contains only 20 cells, i.e., isolated bits (if any). Note 

that the number of cells in the group must be equal to an integer power to 2, i.e., 1, 2, 4, 

8. . . . 

 The procedure must be applied for all adjacent cells of the K-map, even when they appear 

to be not adjacent—the top row is considered to be adjacent to the bottom row and the 

rightmost column is considered to be adjacent to the leftmost column, as if the K-map 

wraps around from top to bottom and right to left. For example, Group 1 of SOP form 

solution in Table 1. 
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 A bit appearing in one group can be repeated in another group provided that this leads to 

the increase in the resulting group-size. For example, cell 5 is repeated in both Group 3 as 

well as 4 in SOP form solution of Table 1 as it results in the formation of a group with 

two cells instead of a group with just one cell. 

 Don’t Care conditions are to be considered for the grouping activity if and only if they 

help in obtaining a larger group. Otherwise, they are to be neglected. Here the Don't Care 

terms in the cells 0 and 1 are considered to create Group 2 of SOP solution form as it 

results in a group with four cells instead of just two. 

   SOP Form Solution  POS Form Solution 

Number of groups having 16 

cells 
0 0 

Number of groups having 8 

cells  
0 0 

Number of groups having 4 

cells (Blue Enclosures in 

Figure 3) 

2 

Group 1 (Cells 0,2,8,10) 

1 
Group 1 (Cells 

0,1,2,3)  Group 2 (Cells 0,1,4,5) 

Number of groups having 2 

cells (Orange Enclosures in 

Figure 3) 

4 

Group 3 (Cells 5,7) 
Group 4 (Cells 

5,13) 
2 

Group 2 (Cells 1,9) 

Group 5 (Cells 

10,11) 

Group 6 (Cells 

10,14) 
Group 3 (Cells 2,6) 

Number of groups having 1cell 

(Green Enclosures in Figure 3) 
0 2 

Group 4 (Cell 12) 

Group 5 (Cell 15) 

Table 1 

  

Hence for the example considered, the K-map showing the groups can be obtained as given by 

Figure 3 whose information is summarized in Table 1. 
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Figure 3: K-maps grouped for (a) SOP solution and (b) POS solution 

 Step 4: Simplified Logical Expression  

For each of the resulting groups, we have to obtain the corresponding logical expression in 

terms of the input-variables. This can be done by expressing the bits which are common 

amongst the Gray code-words which represent the cells contained within the considered group. 

Another way to describe the process of obtaining the simplified logical expression for a group 

is to eliminate the variable(s) for which the corresponding bits appear within the group as both 

0 and 1. 

Finally, all these group-wise logical expressions need to be combined appropriately to form 

the simplified Boolean equation for the output variable. The same procedure must be repeated 

for every output variable of the given problem. 

For instance, in the example considered, the logical term for Group 2 of SOP form solution is 

obtained as A̅C̅. This is due to the fact that this group has 0 as the common Gray code-word bit 

both along its rows as well as its columns, highlighted in Figure 4(a). This gives us the literals 

A̅ and C̅. 

Similarly, in the case of Group 1 of POS form solution, we can obtain the logical expression as 

A+B. This is because the group has the common Gray code-words as 0,0 along its row only 

(no code-word bits are common along its columns) which correspond to the input variables A 

and B. 
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Figure 4: K-map simplification technique for (a) SOP solution and (b) POS solution 

 Following this same process, we can obtain the logical terms corresponding to each of the 

groups to finally form the logical expression for the particular output, as shown by Table 2. 

  

SOP Form Solution POS Form Solution 

Groups Logical Expression Groups Logical Expression 

Group 1 B̅D̅ Group 1 A+B 

Group 2 A̅C̅ Group 2 B+C+D̅ 

Group 3 A̅BD Group 3 A+C̅+D 

Group 4 BC̅D Group 4 A̅+B̅+C+D 

Group 5 AB̅C Group 5 A̅+B̅+C̅+D̅ 

Group 6 ACD̅     

Thus, Y = B̅D̅ + A̅C̅ + A̅BD + BC̅D + AB̅C + ACD̅ Thus, Y = (A+B) (B+C+D̅) (A+C̅+D) (A̅+B̅+C+D) (A̅+B̅+C̅+D̅) 

Table 2 

 Step 5: System Design 

Having obtained the simplified logical expression, we can decide on the type and the number 

of gates required to realize the expected logic for every output bit, which further results in the 

complete design of the desired system. 

Thus, the digital system corresponding to SOP and POS forms of solution for the given 

example can be designed using the basic gates like NOT, AND, and OR as shown by Figure 

5(a) and 5(b). 
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Figure 5: Digital system corresponding to (a) SOP form of solution and (b) POS form of solution 

  

 

 What is a prime implicant? 
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 It is an implicant that covers as many 1 values (SOP K-map) or 0 values (POS K-map) as 

possible, yet still retains the identity of implicant (# of cells = power of 2, rectangular or square 

shape). Some SOP prime implicants are shown on the adjoining K-map. 

 

Redundant Groups 

After marking out the overlapping groups it is important to also check for redundant groups. If 

all the values of a group G (pair, quad or octet) is covered (overlapping) with other groups then 

that group G is redundant and ignored. Lets check an example. 

Consider the following 4 variables K-map. 
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1st pair = W’XY’Z + W’XYZ = m5 + m7 

 

2nd pair = WXY’Z’ + WXY’Z = m12 + m13 

 

3rd pair = W’XY’Z + WXY’Z = m5 + m13 

If we look at m5 and m13 i.e. 3rd pair, it is a redundant group as m5 and m13 is covered in 1st and 

2nd pair so we will remove the redundant group (3rd pair). 

Updated pairs after reduction 

 

1st pair = W’XY’Z + W’XYZ 

= W’XZ 

 

2nd pair = WXY’Z’ + WXY’Z 

= WXY’ 
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1. Reduce F(A,B,C,D) = ∑(0,1,2,4,5,7,10,15) using K-map 

Since function F has 4 variables so we will create a 4 variable K-map having 2
4
 = 16 cells. 

 

 

 

Now fill the cell marked with subscript 0,1,2,4,5,7,10 and 15 with value 1 as we are dealing with 

Sum of Products SOP. 
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And fill rest of the cells with value 0 

 

 

 

Now we will mark the octets, quads and pairs. 

Looking at the K-map we can tell that there is no octets so we will look for quads. 

The k-map has quad so we will mark it. 
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Now we will look for pairs. If we look close we can tell that the k-map has some pairs. So we 

will mark them. 

 

Now we will map-roll and look for octets. If we look at the k-map we can tell that after map 

rolling we don't get any octet. So we will now check for quads. 

We roll the k-map again and this time we are looking for quads. But giving a closer look we can 

tell that there is no quad after we do map rolling. So time for us to look for pairs. 

This time we are lucky. Looking closer we can tell that after map rolling the k-map we have a 

pair. So we will mark it. 
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Now we will look for overlapping groups. 

If we look at the K-map we will see that m7 in pair (m5, m7) and pair (m7, m15) is shared in both 

the groups. So both the pairs are overlapping groups. 

Similarly m5 in pair (m5, m7) and quad (m0, m1, m4, m5) is shared in both the groups. So the pair 

and quad are overlapping groups. 

And there is no other overlapping groups so, we will now check for redundant groups. 

Looking at the K-map we can tell pair (m5, m7) is redundant as m5 is covered in quad (m0, m1, 

m4, m5) and m7 is covered in pair (m7, m15). So we will remove the pair (m5, m7). 

 

 

Now we will write down the marked groups and find the reduced expression. 

quad = (m0, m1, m4, m5) = (W’X’Y’Z’ + W’X’Y’Z) + (W’XY’Z’ + W’XY’Z) 

= W’X’Y’ + W’XY’ [Z’ changed, so removed] 

= W’Y’ [X’ changed to X, so removed] 

1st pair = (m7, m15) 

= W’XYZ + WXYZ 

= XYZ [W’ changed to W, so removed] 

2nd pair = (m2, m10) 

= W’X’YZ’ + WX’YZ’ 

= X’YZ’ [W’ changed to W, so removed] 

Now we OR (+) the results to get the final reduced expression. 

F = W’Y’ + XYZ + X’YZ’ 

This is the required answer. 
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5 VARIABLE KMAP 

Simplify the Boolean expression f (A,B,C,D,E) = ∑m (0,3,4,7,8,12,14,16,19,20,23,24,26,28) 

  

Step 1:  

Number of input variables = 5 

Number of output variables = 1 

Minterm expansion of the output is given as f (A,B,C,D,E) 

= ∑m (0,3,4,7,8,12,14,16,19,20,23,24,26,28) 

  

Steps 2, 3, and 4: 

Number of K-maps required = 1 

Each K-map should have 32 cells in it. 

Thus we get: 

  

Figure 8: Grouped 32-cell K-map 

 Number of Groups with 32 cells Nil 

Number of Groups with 16 cells Nil 

Number of Groups with 8 cells (Orange Enclosures in Figure 8) 1 Group 1 (Cells 0,4,8,12,16,20,24,28) D̅E̅ 

Number of Groups with 4 cells (Blue Enclosures in Figure 8) 1 Group 2 (Cells 3,7,19,23) B̅DE 

Number of Groups with 2 cells  Nil 

Number of Groups with 1 cell (Green Enclosures in Figure 8) 2 
Group 3 (Cell 14) A̅BCDE̅ 

Group 4 (Cell 26) ABC̅DE̅ 

Thus, f (A,B,C,D,E) = D̅E̅ + B̅DE + A̅BCDE̅ + ABC̅DE̅ 

Table 6 

 Step 5: 

The digital system corresponding to the function given is obtained as shown in Figure 9: 
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Figure 9: 5-variable K-map for the function shown in Example 3 

 Advantages of K-Maps 

1. The K-map simplification technique is simpler and less error-prone compared to the 

method of solving the logical expressions using Boolean laws. 

2. It prevents the need to remember each and every Boolean algebraic theorem. 

3. It involves fewer steps than the algebraic minimization technique to arrive at a simplified 

expression. 

4. K-map simplification technique always results in minimum expression if carried out 

properly. 

 Disadvantages of K-Maps 

1. As the number of variables in the logical expression increases, the K-map simplification 

process becomes complicated. 

2. The minimum logical expression arrived at by using the K-map simplification procedure 

may or may not be unique depending on the choices made while forming the groups. For 

example, for the output variable Y shown by the K-map in Figure 10, we can obtain two 

different, but accurate logical expressions. The variation in the solution obtained is 

observed in the third term, which may be either B̅C̅ or AC̅ (highlighted in Figure 10). 

This difference depends on whether one chooses to group the cells (0,4) or (4,6) to form a 

two-celled group in order to cover the one found in the K-map cell numbered 4. 

 


